Giải bài 2.14 trang 32 SGK Toán 10 tập 1 – Kết nối tri thức

Đề bài

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}y – 2x \le 2\\y \le 4\\x \le 5\\x + y \ge  – 1\end{array} \right.\) trên mặt phẳng tọa độ.

Từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) =  – x – y\) với \(\left( {x;y} \right)\) thỏa mãn hệ trên.

 

Phương pháp giải – Xem chi tiết

– Biểu diễn các miền nghiệm của từng bất phương trình \(y – 2x \le 2\); \(y \le 4\); \(x \le 5\) và \(x + y \ge  – 1\) trên cùng một mặt phẳng tọa độ.

Bước 1: Vẽ đường thẳng \(ax + by = c\)

Bước 2: Lấy điểm một điểm không thuộc đường thẳng \(ax + by = c\) và thay vào bất phương trình cần xác định miền nghiệm.

Bước 3: Nếu tọa độ điểm đó thỏa mãn bất phương trình thì miền nghiệm của bất phương trình chứa điểm đó.

– Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) =  – x – y\)

Bước 1: Xác định các đỉnh của đa giác

Bước 2: Tính giá trị \(F\left( {x;y} \right) =  – x – y\) tại các đỉnh đó và kết luận.

Lời giải chi tiết

Bước 1: Vẽ đường thẳng \(d_1: y-2x=2\) đi qua (0;2) và (-1;0).

Lấy điểm O(0;0) không thuộc \(d_1\). Vì 0-2.0=0<2 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(y – 2x \le 2\) là nửa mp bờ \(d_1\), chứa điểm O.

Bước 2: Vẽ đường thẳng \(d_2: y=4\) đi qua (0;4) và (1;4)

Lấy điểm O(0;0) không thuộc \(d_2\). Vì 0<4 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(y \le 4\) là nửa mp bờ \(d_2\), chứa điểm O.

Bước 3: Vẽ đường thẳng \(d_3: x=5\) đi qua (5;0) và (5;1).

Lấy điểm O(0;0) không thuộc \(d_3\). Vì 0<5 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(x \le 5\) là nửa mp bờ \(d_3\), chứa điểm O.

Bước 4: Vẽ đường thẳng \(d_4: x + y = – 1\) đi qua (-1;0) và (0;-1).

Lấy điểm O(0;0) không thuộc \(d_4\). Vì 0+0=0>-1 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(x + y \ge  – 1\) là nửa mp bờ \(d_4\), chứa điểm O.

Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với

A(1;4); B(5;4), C(5;-6); D(-1;0).

Giá trị F tại các điểm A, B, C, D lần lượt là:

\(F\left( {1;4} \right) =  – 1 – 4 =  – 5\)

\(F\left( {5;4} \right) =  – 5 – 4 =  – 9\)

\(F\left( {5;-6} \right) =  – 5 – (-6) =  1\)

\(F\left( { – 1;0} \right) =  – \left( { – 1} \right) – 0 = 1\)

Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -9.

 

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *